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Aecidental degeneracy and symmetry Lie algebra 

R Dirlt and M MoshinskySQ 
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$ lnstituto de Fisica, UNAM, Apartado Postal 20-364, Mexico, DF 01000 Mexico 

Received 4 January 1985 

Abstract. In this paper we consider a very elementary example of accidental degeneracy 
and show that it is not explained by the symmetry Lie algebra of the corresponding classical 
problem. 

1. Introduction 

In an article published recently Moshinsky and Quesne (1983) addressed themselves 
to the question of whether the presence of accidental degeneracy necessarily implies 
the existence of a symmetry group. They did this by studying an example suggested 
by Konopelchenko in which the Hamiltonian was an harmonic oscillator plus a 
spin-orbit coupling force as well as an additional centrifugal potential. Their con- 
clusion was that the corresponding classical problem had a well defined symmetry Lie 
algebra which did not have a quantum mechanical counterpart, and thus could not 
explain the accidental degeneracy of the problem. 

While the Hamiltonian was very elementary, the actual analysis of the operators 
from which one obtained the generators of the symmetry Lie algebra in the classical 
limit turned out to be rather involved. Furthermore the concept of spin was used in 
the analysis for which one normally thinks there is no classical counterpart, though 
several authors (Sudashan and Mukanda 1974, Yang and Hirschfelder 1980) have 
proved in the last few years that this is not the case. 

In view of the situation described, the present authors asked themselves whether 
an example of accidental degeneracy not involving the concept of spin and allowing 
a very simple analysis could be found, which would lead to the same conclusions as 
those that follow from the paper of Moshinsky and Quesne (1983). Such an example 
is actually available and we shall discuss it in this paper, in the hope that it will very 
clearly illustrate the fact that while a symmetry group may exist for the classical limit, 
it does not explain the accidental degeneracy of the quantum problem. 

2. The problem 

Let us consider the Hilbert space of square integrable functions in the unit circle 
characterised by the angle 4 in the interval O s  4 ~ 2 ~ .  These functions can be 
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developed in terms of the kets 

Im) = ( 2 ~ ) - " ~  exp(im4) (2.1) 

A = -i ala4 (2.2) 

in which the latter are eigenfunctions of the angular momentum operator in the plane 

corresponding to the eigenvalues m = 0, *l ,  12 ,  . . . . 
Let us now consider two systems associat5d with the angles +,, 42 and having as 

corresponding angular momentum operators M , ,  M2 defined as in (2.2). We shall now 
take as the Hamiltonian 

A=A:+A: (2.3) 

Imlm2) = Or)- '  exp[i(ml+l+ m242)I (2.4) 

E,,,, = m f +  m;. (2.5) 

whose normalised eigenstates are 

with m , ,  mz being arbitrary integers. The eigenvalues of A are then 

Clearly the problem has accidental degeneracy. To begin with, there is the obvious 
fact that (m,, - m 2 ) ,  ( - m , ,  m 2 ) ,  ( - m , ,  -m2), (m2 ,  m , )  give the same energy as (ml ,  mz). 
This degeneracy is due to the point group CdV which is the (maximal) point group of 
a square lattice. There is also the possibility that a given non-negative integer can be 
expressed as a sum of two squares in different ways. For example, if E = 650 there 
are the possibilities 

( m , ,  m 2 )  = (19,17); (23,111; (25,5) (2.6) 

which, together with all their permutations and changes of sign, give a total of 24 
states for that energy. 

In figure 1 we enumerate by the index N = 1,2 ,3 , .  , . , in the abscissa the successive 
energy levels. The energies themselves are given by the upper end of the vertical lines 
according to the scale in the ordinate. The degeneracy is measured by the length of 
the line, taking as the unit the length of the first level N = 1, E = 0, which is non- 
degenerate. Thus, for example, N = 2 corresponds to E = 1, (m,, m2) = (1,O) where 
we write only the case when 0 S m2 s m1 and its degeneracy is 4, while for N = 14, we 
have E = 25, ( m , ,  m 2 )  = (4,3), ( 5 , O )  and the degeneracy is 12. Note the irregular 
behaviour of the eigenvalues in regard to their degeneracy. 

To answer the question of whether there is a symmetry group responsible for this 
accidental degeneracy requires first an analysis, both in classical and in quantum 
mechanics, of a rotor in the plane. 

3. The rotor in the plane 

We consider first the problem classically involving the angle 4 and its canonically 
conjugate angular momentum M satisfying the Poisson bracket relation 

{4, M )  = 1 (3.1) 
and in which, as before, 0 c 4 c 2rr. 



Accidental degeneracy and symmetry Lie algebra 

I 

2425 

40 
N 

80 

Figure 1. We enumerate by the index N = 1 , 2 , 3 , .  . , , in the abscissa the successive energy 
levels. The energies themselves are given by the point at the upper end of the vertical lines 
according to the scale of the ordinate. The degeneracy is measured by the length of the 
line, taking as the unit the length of the first level N = 1, E = 0, which is non-degenerate. 

In quantum mechanics one immediately encounters a problem in defining the 
multiplicative operator associated with $J as well as the corresponding operator of 
angular momentum as discussed, among others, by Levy Leblond (1976). 

One could formulate the problem as follows. Let us introduce an observable x 
with the standard spectrum 

- c o s x s c o  (3.2) 
and define 

# = ~ - 2 n 5 7  if 2n7r s x s 2( n + 1) 57, A = -ia/ax (3.3) 
so that # is given in figure 2. 

1976) that the commutator of 2 and # takes the value 
We then immediately see from the derivative of a step function (Levy Leblond 

The above result can be corroborated in quantum mechanics if we take a complete set 
of states in the interval 0 6 x d 257, where in this interval we replace x by #, i.e. 

Im) = ( 2 ~ ) - ” ~  exp(im4). (3.5) 
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X 

Figure 2. The periodic variable 4 as a function of x in the interval --03 zs x 5 -03. 

if m'# m 
if m'=  m = ( m ' 1 4 ) m ) ( m - m r ) =  

which is certainly different from the ia,., we could expect if 9, A are considered to 
be canonically conjugate. On the other hand, (3.8) agrees with the matrix element on 
the right-hand side of (3.4). 

The well known fact that the Poisson bracket { +, M }  does not translate into -i[ +, M ]  
in quantum mechanics will be central to our discussion. yote,  though, that the problems 
disappear if instead of a commutator between 4 and M, we consider those in which 
4 is replaced by a periodic function of the variable like 

exp(*i+) = exp(*iX). (3.9) 

In this case it is clear that the Poisson brackets 

{ M ,  exp(*i+)} = Ti exp(ki4)  

do translate into 

[A, exp(*i4)1= *exp(*i4). 

If we now define 

(3.10) 

(3.11) 

(3.12) 

we see that these operators correspond to the Lie algebra of a Euclidean group E(2) 
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of two dimensions 

[io, i*] = * i* [i+, i-] = 0 

which clearly is the dynamical group of the rotor in the plane. 
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(3.13) 

4. The dynamical and symmetry groups of our problem 

If we consider now the Hamiltonian fi = fi: + fi; of (2.3) it is immediately clear that 
its dynamical group is the direct product of two Euclidean groups 

El@) xE2(2) (4.1) 

the elements of whose Lie algebras are given by 

i: i: i = 1 , 2  (4.2) 

!efined as in (3.12) but now with indices 1 , 2  on the 4. We immediately see that with 
I : ,  12 we can transform any state of the type (2.4) into any other. Furthermore the 
Hamiltonian (2.3) is in the enveloping algebra of El(2) x E2(2). 

Our problem is to find in the enveloping algebra elements that commute with fi 
aFd close under commutation among themselves, thus providing a symmetry group of 
H. We shall proceed to show that this can be done in the classical limit but it does 
not have a counterpart in quantum mechanics for the reasons discussed in 0 3. 

Let us consider first the classical Hamiltonian 

H=M:+M; (4.3) 

{ 4, M, I = 8, (4.4) 

MI M* K=41M2-42M1 (4.5) 

with the Poisson brackets relations 

{4,, 4,) = {Mu M,} = 0 i, j = 1,2. 

It is immediately clear that the Euclidean group whose generators are 

is the symmetry group of the Hamiltonian (4.3) as { H, M,} = { H, M 2 }  = { H, K }  = 0 and 
furthermore MI, M2, K are the generators of an E(2) Lie algebra. 

02 the other hand, the corresponding quaFtum analysis no longer applies and in 
fact K is no longer an integral of motion of H as we see when we consider 

& A I  = [41, f i l k  -[42, Alfil 
= &[41, f i I l f i 2 + [ 4 1 ,  f i 1 1 f i 1 f i 2 -  f i 2 [ 4 2 ,  fi21fi1-[42, f i 2 l f i 2 f i l  

8 ( 4 1 - 2 n r ) f i 2 + z  8 ( 4 1 - 2 n r ) f i 1 f i 2  
n 

where we made use of (3.4). Clearly then the classical symmetry group does not 
translate into the quantum picture and thus cannot explain the presence of an accidental 
degeneracy. 

in terms of the generators I ? ,  I : ,  i = 1,2 of the dynamical group of our problem. 
Another way of arriving ;t th! same conclusion is to try to write €? = 41A?f2 - 
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(4.7) 

but, because of the many-valuedness of the logarithmic function, i? will not be a 'bona 
fide' element in the enveloping algebra of E1(2) x E2(2). 

In conclusion, we have here a very elementary example in which one has accidental 
degeneracy, and in which one also has a Lie algebra classically that would explain the 
fact that the Hamiltonian H of (4.3) is invariant under the transformation: 

M i  = M ,  cos a + M2 sin a Mk = -MI sin a + M2 cos a. (4.8) 

This Lie algebra given by (4.5) does not translate though into a corresponding one in 
quantum mechanics and thus does not explain the accidental degeneracy. 
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